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Vanadium cation-exchanged montmorillonite can efficient-
ly catalyze the selective epoxidation of various alkenes and the
oxygenation of adamantane using molecular oxygen as a sole
oxidant.

Epoxidation is one of the most fundamental and important
reactions in organic synthesis.1 Various methods have been de-
veloped and exploited, and the search for new environmentally
friendly methods using molecular oxygen (O2) as the sole oxi-
dant has attracted much interest. However, there have been
few reports concerning the epoxidation of alkenes using 1 atm
of O2 without the use of reducing reagents.2

Montmorillonites (monts) of smectite clays are composed of
negatively charged layers and an interlayer with cationic spe-
cies.3 The cationic species can easily be replaced by other metal
polycations using the cation exchange ability of the interlayer,
and the metal cation-exchanged monts have considerable poten-
tial as heterogeneous catalysts for various organic transforma-
tions.4 Here, we report the synthesis and characterization of va-
nadium cation-exchanged mont (V-mont) as well as its perform-
ance in catalyzing the epoxidation of various alkenes using 1 atm
of O2 as an oxidant. The V-mont-catalyzed aerobic oxygenation
of adamantane via C–H activation is also described.

V-mont was prepared as follows: Naþ-mont, Na0:66(OH)4-
Si7:7(Al3:34Mg0:66Fe0:19)O20 (6.0 g) (Kunipia F, Kunimine Indus-
try Co., Ltd.) was added to 100mL of aqueous VCl3 solution
(0.025M). Aqueous HCl (1mL, 10M) was added, and the mix-
ture was stirred at 60 �C for 24 h. The resulting slurry was filtered
and washed with distilled water, then dried at 110 �C and
calcined at 800 �C for 18 h, giving 5.5 g of V-mont (V content:
0.97wt%). XRD measurement showed that the lamellar
structure of the uncalcined V-mont with interlayer space of
2.9 �A was transformed into a card-house structure by the above
calcination process.5

The height of the pre-edge peak in V K-edge XANES spec-
trum of the calcined V-mont was similar to that of Na3VO4, but
differed from that of VOSO4, as shown in Figure 1a.

6 This result
showed that the vanadium species existed in a tetrahedral-like
geometry. Furthermore, the energy position of the pre-edge peak
and the absorption edge for the V-mont were higher than those of
VOSO4, suggesting that the oxidation state of the V-mont is 5þ.6

In Fourier transform (FT) of k3-weighted V K-edge EXAFS, no
peaks due to a V–O–V bond, detectable in the spectrum of V2O5

at around 2.7 �A, was observed for the V-mont (Figure 1b). The
inverse FT of the peak around 1–2 �A was well fitted using two
short (1.59 �A) and two long (1.70 �A) V–O bonds. The short V–
O distance is associated with a V=O bond, as found in V2O5.

7

The above results suggest that a highly dispersed monomeric di-
oxo V5þ species surrounded by four oxygen atoms can be creat-

ed on the mont.
Initially, epoxidations of cyclooctene were carried out using

various metal-exchanged monts under 1 atm of O2 in �,�,�-tri-
fluorotoluene solvent,8,9 as shown in Table 1. Among the cata-
lysts examined, the calcined V-mont proved the most efficient
for the epoxidation of cyclooctene (Entry 2). Interestingly, the
uncalcined V-mont was found to be less effective (Entry 3). Oth-
er vanadium catalysts such as V2O5, V-X Zeolite, V-alumina,
and VO(acac)2 gave poor results (Entries 9–12). Under opti-
mized reaction conditions, the yield of cyclooctene oxide
reached up to 80% with >99% selectivity after 72 h (Entry 1).
To the best of our knowledge, this is the first example of selec-
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Figure 1. (A) V K-edge XANES spectra of (a) VOSO4, (b) V-
mont, and (c) Na3VO4. (B) Fourier transforms of k3-weighted V
K-edge EXAFS for (d) V2O5, and (e) V-mont.

Table 1. Epoxidation of cyclooctene catalyzed by metal cation-
exchanged monts and vanadium compounds using O2

a

O2, catalyst
O

Entry Catalyst Yield of epoxide/%b

1c V-montd 80

2 V-montd 31

3 V-montd,e trace

4 Fe-mont trace

5 Mn-mont trace

6 Mo-mont trace

7 Ru-mont trace

8 Na-mont trace

9 V2O5
d 4

10 V-X zeolited 1

11 V/Al2O3
d trace

12 VO(acac)2
d trace

aSubstrate (3mmol), catalyst (0.1 g), �,�,�-trifluorotoluene
(5mL), 90 �C, 48 h, O2 atmosphere. bDetermined by GC analysis
using an internal standard technique. c�,�,�-Trifluorotoluene
(1mL), 72 h. dV (0.019mmol). eUncalcined V-mont was used.
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tive liquid-phase epoxidation of cyclooctene using a heterogene-
ous catalyst with an atmospheric pressure of O2 as the sole oxi-
dant.2

The scope for epoxidation using the V-mont catalyst is sum-
marized in Table 2. This V-mont selectively catalyzed the epox-
idation of various kinds of cyclic and linear alkenes with 1 atm of
O2, affording the corresponding epoxides as major products.
Upon completion of the epoxidation of cyclooctene, the V-mont
was separated from the reaction mixture by simple filtration, and
could be reused without any appreciable loss of its high catalytic
activity and selectivity (Entries 2 and 3).

Additionally, the above V-mont exhibited high catalytic ac-
tivity for the oxygenation of adamantane in tert-butyl acetate
solvent under an atmospheric O2 pressure, affording 1-adaman-
tanol (1), 1,3-adamantanediol (2), and 2-adamantanone (3); the
total yield of oxygenated products reached 93% at 96 h, as
shown in Scheme 1.10 Oxidation did not proceed in the absence
of the V-mont under identical reaction conditions. This yield is
higher than those reported for other methods of adamantane
oxidation with O2 as a sole oxidant.

11

The above two oxidation reactions were inhibited by the
addition of radical scavengers such as p-tert-butylcatechol and
2,6-di-tert-butylphenol. Furthermore, the ratio of oxidation at
tertiary vs secondary positions in the oxygenation of adamantane
was 8.6:1, which is similar to the ratio observed for radical
oxidations.12 These facts suggest that the above oxidations by
the V-mont involve a radical oxidation mechanism.11a,12

In conclusion, we have developed a highly efficient hetero-
geneous catalyst system based on monts for the epoxidation with
molecular oxygen. This system has the following advantages: (a)
the use of 1 atm of molecular oxygen as an oxidant without the
need for reducing reagents or radical initiators, (b) high catalytic
activity and selectivity, (c) recyclable catalysts, and (d) applica-
tion to aerobic oxygenation of adamantane via C–H activation.
Further studies on mechanistic details and possible extension
to other organic syntheses are currently underway.
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Table 2. Epoxidation of various alkenes by V-mont in the
presence of O2

a

Entry Substrate Yield of epoxide/%b Selectivity/%

1 Cyclooctene 80 >99

2c Cyclooctene 79 98

3d Cyclooctene 78 98

4 Cyclododecene 40 93

5 Cyclopentene 35 54e

6 2-Octene 21 80f

7 1-Octene 11 85g

aSubstrate (3mmol), V-mont (0.1 g, V: 0.019mmol), �,�,�-tri-
fluorotoluene (1mL), 90 �C, 72 h, O2 atmosphere. bDetermined
by GC analysis using an internal standard technique. cReuse-1.
dReuse-2. e2-Cyclopentene-1-ol was formed. fSmall amounts of
octanal was formed. gSmall amounts of decanal was formed.

V-mont (0.6 mol %)

tert-butyl acetate (10 mL), 

96 h, 1 atm of O2, 100 °C

OH OH
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O
+ +

Total Yield 93%
Selectivity; (1) : (2) : (3) = 41 : 44 : 15
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Scheme 1.

Chemistry Letters Vol.34, No.12 (2005) 1627

Published on the web (Advance View) November 8, 2005; DOI 10.1246/cl.2005.1626


